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ABSTRACT

The quantitative structure-retention relationships (QSRR) studies on poly-

cyclic aromatic hydrocarbons (PAHs) show that the multiple linear regression

(MLR) models achieved in training sets have to be validated. The MLR

models derived by using one or two descriptors showed high linear

correlations between input descriptor(s) and high-performance liquid chro-

matography (HPLC) retention times, but showed very poor predictivity in

test sets for one-descriptor models, whereas the models derived by using two

descriptors (molecular connectivity and dipole moment) showed good

predictivity. These results suggest that one-descriptor models are not suffi-

cient to explain the retention time in spite of high r2 values in training sets.
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In addition, the predictivity was affected by the solvent. High predictive r2

values were obtained in conditions in which methanol was used as a solvent.

Key Words: HPLC; Retention time; QSRR; MLR; PAHs.

INTRODUCTION

The quantitative structure-activity (or structure-property) relationships (QSAR

or QSPR) studies express physical, chemical, or biological property of molecules as

a function of chemical structure. This concept is based on the assumption that the

difference in the structural properties of molecules is able to account for the

difference in their chemical or biological properties. The search for such relation-

ships has been one of the most important applications of modeling techniques.[1–5]

Polycyclic aromatic hydrocarbons (PAHs) are well known for their ubiquitous

occurrences in the environment.[6] A large variety of combustion processes, for

example, the burning of waste, coal, wood, and biomass, as well as traffic exhaust,

spray PAHs in the environment.[7–10] The PAHs are included in carcinogenecity,

unscheduled DNA synthesis, and free radical DNA damage. The propensity of

PAHs to be carcinogenic depends on the ability to form the cation that arylates the

nucleic acid base.[11,12] Nitrated polyaromatic hydrocarbons have been also

recognized as a potent class of mutagen.[13] Nitropyrens have been reported to

be the most potent mutagens.[14] It is known that nitrated PAHs can be formed by

reaction of PAHs and nitrogen oxides, both of which are present in combustion

effluents. Recent interest has focused on development of analytical methods for the

determination of PAHs in environmentally significant samples. A lot of analytical

methods have been used to determine PAHs. These include high-performance

liquid chromatography (HPLC) with electrochemical, mass spectroscopy (MS),

thin-layer chromatography (TLC) with fluorescence detection, gas chromatography

(GC), and GC=MS. In chromatographic techniques, chromatographic retention is

based on the interaction between solute and stationary phase. In this work, the

quantitative structure-retention relationships (QSRR) studies were carried out to

obtain further insight into the relationships between chemical structure and

retention time of PAHs in HPLC. The multiple linear regressions (MLR) were

performed to find the relationships.

EXPERIMENTAL

High-Performance Liquid Chromatography

A Hewlett–Packard Model 1090 HPLC was used for determination of the

retention times of PAHs.[15] Retention times were measured at seven different
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solvent conditions. Chromatographic conditions are shown in Table 1. The

PAHs used in this study and their structural features are shown in Fig. 1.

Molecular Modeling

All the PAH compounds in this work were constructed by using InsightII

package (Accelrys Inc.) and minimized by using va09a minimizers until

maximum energy derivatives are less than 0.00001 kcal=Å. The minimized

structures were then fully geometrically optimized using AM1 Hamiltonian in

MOPAC software package. The semiemperically derived low energy structures

were used to compute the values of QSRR descriptors. The following set of

descriptors was used in multiple linear regression analysis: (1) molecular

weight (MW); (2) molecular connectivity (w); (3) length-to-breadth ratio

(L=B); (4) volume; (5) Connolly surface area; (6) the largest principal moment

of inertia (Ia); (7) dipole moment; (8) highest occupied molecular orbital

energy (HOMO); and (9) lowest unoccupied molecular orbital energy

(LUMO).

The molecular connectivity (w) expresses a molecular structure based on a

count of skeletal atom groupings, weighted by the degree of skeletal branch-

Table 1. HPLC conditions.[15]

HPLC chromatography Hewlett-Packard Model 1090

Column ODS Hypersil (100 mm�

4.6 mm I.D., 5mm particles)

Injection volume 5 mL

Oven temperature 40�

Flow rate 1 mL=min

Solvent concentration

Condition 1 ACN 50% �!
0:5%=min

70%

Condition 2 ACN 50% �!
1:0%=min

70%

Condition 3 MeOH 50%�!
1:0%=min

70%

Condition 4 ACN 60% �!
0:5%=min

80%

Condition 5 ACN 60% �!
1:0%=min

80%

Condition 6 MeOH 60%�!
0:5%=min

80%

Condition 7 MeOH 60%�!
1:0%=min

80%

Note: ACN, acetonitrile; MeOH, methanol.
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Figure 1. Structures of PAHs.
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ing. It is known that molecular connectivity is correlated with solubility

parameters, boiling points, densities, partition coefficients, and retention

data.[3] In this study, the first-order molecular connectivity was used. This is

calculated by:[3,16]

1w ¼
P

(didj)
�0:5 (1)

where d is equal to the difference between the number of valence electrons and

the number of hydrogen atoms attached to that atom which is express as:

d ¼
Zu � h

Z � Zu � 1
(2)

where Z u is the number of valence electrons in the atom, Z is its atomic

number, and h is the number of hydrogen atoms bound to the same atom. The

L=B ratio is calculated from the rectangle enclosing the PAH molecule which

maximizes L=B.[17]

Quantitative Structure-Retention Relationship Analysis

In order to ensure reliability of our model, the data set was divided into

training and test sets. Several criteria have been used for selection of the best

subset. One of the most popular criteria is the maximization of |X0X|, which is

used in D-optimal design. In this work, the stepwise addition method was

applied for the D-optimal design of Mitchell[18] for selection of the training

set. The subsets having high |X0X| were listed in the order of decreasing |X0X|.

Then, one sample was added to the subsets and the new subsets were listed

again. This procedure was repeated to reach a given number of members in the

training set. Prior to the D-optimal design, the crossvalidation was performed

in order to find the optimum number of descriptors. The MLR model is:

yi ¼ b0 þ b1xi1 þ b2xi2 þ � � � þ bkxik þ ei i ¼ 1, 2, . . . , n (3)

where the observed values of the yis are the dependent variables, the xi1s,

xi2s, . . . , xiks are the sets of the k independent variables (or descriptors), b0,

b1, . . . , bk are the regression coefficients, and the eis are independently

distributed normal errors. When MLR was performed by using two descrip-

tors, all possible combinations of these descriptors were considered to find the

best regression model. The multicollinearity among descriptors was identified

Prediction of HPLC Retention Time Using MLR 2991
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using the variance inflation factor (VIF).[19] The VIF for the ith regression

coefficient is expressed as

VIF ¼
1

1� ri
2

(4)

where ri is the coefficient produced by regressing the descriptor xi against the

other descriptors, xj ( j 6¼ i). The models of which VIF is greater than 10, were

not considered. The predictive activity of the model was quantitated in terms

of r2 which is defined as

r2 ¼ 1:0�

P
( ypred � yactual)

2

P
( yactual � ymean)2

(5)

where ypred, yactual , and ymean are predicted, actual, and mean values of the

target property, respectively.

RESULTS AND DISCUSSION

Single-Descriptor Multiple Linear Regression Models

The number of training set members was set to 11, because the largest

determinant is zero when the number of training set members is greater than 11

in D-optimal design by using one descriptor. Prior to D-optimal design, the

input descriptors were selected by using crossvalidation. Since the cross-

validated r2 values of molecular weight, molecular connectivity, volume,

surface area, and the largest moment of inertia were greater than 0.5 in all

conditions, D-optimal designs were performed with each of these descriptors.

The values of retention times and descriptors used in MLR models are listed in

Table 2, which shows that retention times have a tendency to increase as the

values of molecular weight, molecular connectivity, volume, and surface area

increase. The selected training set members for each descriptor and the

statistical summary of one-descriptor MLR models are shown in Tables 3 and

4. The MLR models achieved by using each of molecular connectivity, volume,

and surface area show very high r2 values (greater than 0.9) in training sets. The

molecular connectivity had the highest linear correlations with retention times

in all conditions, which seems to be caused by the fact that the molecular

connectivity has the information about molecular size as well as molecular

shape. In spite of high linear correlations in training sets, the predictivity in test

sets was very low (Table 4). Most predictions gave negative r2 values, which

mean the lack of predictivity. This low predictivity is caused by the fact that

2992 Moon et al.
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these models cannot predict the retention times of nitrated PAHs (2-nitrofluor-

ene, 9-nitrofluoranthene, 1-nitropyrene, and 3-nitrofluoranthene). In the case of

the models derived by using each of molecular weight and the largest principal

moment of inertia, r2 values in training sets were relatively low but the

predictivity in test sets was somewhat higher than others (Table 4). It is also

shown that these models are not able to predict retention times of nitrated

PAHs in test sets. The moment of inertia (Ia¼
P

n
mi ri

2) can be expressed as a

function of mass (mi), so it generally increases with increasing retention time.

It was reported that molecular connectivity is linearly related to gas chromato-

graphic retention indices of nitrated PAHs and can be used to predict gas

chromatographic retention characteristics of nitrated PAHs.[3,4] But in this

study, molecular connectivity may not be sufficient to predict retention times

of HPLC because both nitrated and non-nitrated PAHs are contained in the

data set. The L=B had little relationships with retention time (Table 2), because

the molecular weights of PAHs in a training set are very different. The L=B is

capable of differentiating retention for a set of isomeric PAHs but not for

combinations of PAHs with different molecular weights.[20]

Two-Descriptors Multiple Linear Regression Models

The number of training set members was set to 11, the same number as

one-descriptor models. Prior to D-optimal design, the input descriptors were

selected by using crossvalidation. Since molecular connectivity and dipole

moment showed the highest crossvalidated r2 values in all conditions,

Table 3. Training set members selected by D-optimal design.

Descriptor Training set members

MWa 1 4 5 6 7 8 14 16 18 19 20

wb 1 2 5 6 8 15 16 17 18 19 20

Volc 1 2 5 6 7 15 16 17 18 19 20

Aread 1 2 5 6 7 15 16 17 18 19 20

PIe 1 3 5 6 7 8 15 16 18 19 20

w Dipf 1 3 4 5 9 10 16 17 18 19 20

aMW, molecular weight.
bw, molecular connectivity.
cVol, volume.
dArea, Connolly surface area.
ePI, the largest principal moment of inertia (�10�38 g cm2).
fDip, dipole moment.
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D-optimal designs were performed with using these descriptors. The cross-

validated r2 values were 0.966, 0.981, 0.991, 0.940, 0.957, 0.980, and 0.988

for conditions 1, 2, 3, 4, 5, 6, and 7, respectively, and condition 3 had the

greatest value. The results of MLR derived by using molecular connectivity

and dipole moment suggest that these descriptors have very high linear

correlations with retention times. The r2 values in training sets were 0.993,

0.997, 0.998, 0.986, 0.991, 0.997, and 0.997 for conditions 1, 2, 3, 4, 5, 6, and

7, respectively, and condition 3 had the greatest r2 value of 0.998 (Table 4).

The best model (condition 3) is

RT ¼ 5:748[w]� 0:917[Dip] � 9:049

(�0:113) (�0:057) (�0:754)

N ¼ 11; r2 ¼ 0:998; F ¼ 1765:132

where w is molecular connectivity and Dip is dipole moment. HPLC retention time

generally increased with increasing molecular connectivity. For example, the short

retention time (10.305 in condition 3) of naphthalene correlates with small

molecular connectivity (3.405), while the longer retention time (30.105 in

condition 3) of indeno(1,2,3-cd)pyrene correlates with larger molecular connectiv-

ity (7.720). The correlations between experimental and calculated retention times of

training and test sets in condition 3 are plotted in Fig. 2, which shows that the

two-descriptors models had high predictivity. The predictive r2 values in test sets

were 0.770, 0.867, 0.978, 0.552, 0.693, 0.858, and 0.934 for conditions 1, 2, 3, 4, 5,

6, and 7, respectively. These results show that the predictivity in test sets had large

differences with chromatographic conditions, in spite of a little difference in r2

values with the chromatographic conditions in training sets. The differences in the

chromatographic conditions are the kinds of solvent, the solvent concentration, and

gradient elution (Table 1). Conditions 1, 2, 4, and 5 used acetonitrile (ACN) as a

solvent and conditions 3, 6, and 7 used methanol (MeOH), of which polarity is

weaker than that of ACN. It could be observed that the predictivity is generally

higher in MeOH than in ACN (Tables 1 and 4). Moreover, very high predictive r2

values were obtained in conditions 3 and 7, in which solvent is MeOH and gradient

elution is 1%=min. This shows good agreement with the experiment, in which using

MeOH as a solvent gives better separation than using ACN.[15]

Compared with one-descriptor models, the r2 values in training sets were

also very high. For example, the one-descriptor model derived by using

molecular connectivity showed a high r2 value of 0.994 in condition 3 and

the two-descriptors model derived by using molecular connectivity and dipole

moment showed a value of 0.998 (Table 4). The difference between the models

is only 0.004 in a training set. However, the predictivity in test sets was highly

improved when two descriptors were used. The MLR models derived by using

molecular connectivity and dipole moment showed good predictivity in test
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sets (r2 values from 0.552 to 0.978), whereas the predictive r2 values were

almost negative in one-descriptor models (Table 4). This lack of predictivity in

one-descriptor models is caused from the failure in prediction of retention

times of nitrated PAHs (2-nitrofluorene, 9-nitrofluoranthene, 1-nitropyrene, and

3-nitrofluoranthene). It is noticeable that the dipole moment has a great effect

Figure 2. Plots of experimental vs. calculated retention time in condition 3 (two

descriptors of molecular connectivity and dipole moment); (a) training set, (b) test set.
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on predictivity cooperatively with molecular connectivity although r2 values of

dipole moment alone are very low (r2 values of almost zero).

CONCLUSION

In this study, MLR was carried out with two kinds of models using one and

two descriptors to obtain the factors explaining HPLC retention times of PAHs.

The D-optimal design was tried for selection of training sets. It could be found

that two descriptors of molecular connectivity and dipole moment had highly

linear correlations with retention times in training sets and showed good

predictivity in test sets. The predictivity was mainly affected by the solvent.

High predictive r2 values were obtained in conditions in which MeOH was used

as a solvent. In the case of one-descriptor models, the r2 values in training sets

were very high but the predictivity in test sets was very poor. These results imply

that MLR models achieved in training sets have to be validated or tested.
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